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This paper proposes an inverse estimation method for the characterisation of the elastic and

anelastic properties of the frame of anisotropic open-cell foams used for sound absorption. A

model of viscoelasticity based on a fractional differential constitutive equation is used, leading to

an augmented Hooke’s law in the frequency domain, where the elastic and anelastic phenomena

appear as distinctive terms in the stiffness matrix. The parameters of the model are nine orthotropic

elastic moduli, three angles of orientation of the material principal directions and three parameters

governing the anelastic frequency dependence. The inverse estimation consists in numerically

fitting the model on a set of transfer functions extracted from a sample of material. The setup uses

a seismic-mass measurement repeated in the three directions of space and is placed in a vacuum

chamber in order to remove the air from the pores of the sample. The method allows to reconstruct

the full frequency-dependent complex stiffness matrix of the frame of an anisotropic open-cell

foam and in particular it provides the frequency of maximum energy dissipation by viscoelastic

effects. The characterisation of a melamine foam sample is performed and the relation between the

fractional-derivative model and other types of parameterisations of the augmented Hooke’s law is

discussed. VC 2014 AIP Publishing LLC. [http://dx.doi.org/10.1063/1.4865789]

I. INTRODUCTION

Energy dissipation in fluid-saturated poroelastic materi-

als is governed by the properties of the solid and fluid phases

and the interaction between these. Under the modelling

paradigm established by Biot,1–3 it is assumed that the corre-

sponding phenomena are independent and spatially homoge-

neous at scales and wavelengths much larger than the pore

size. According to the ambient conditions, porous materials

may thus behave as either solids or equivalent fluids. This

has allowed for the development of a vast amount of charac-

terisation methods either focusing on the acoustical or the

mechanical properties in order to later include them in a

combined model.4–10 In particular, open-cell foams behave

as viscoelastic solids when they are observed under vacuum

conditions. This property has been used in the past in order

to estimate various properties of the frame of porous materi-

als without the influence of air in the pores.9,11–13

Alternative methods exist, where the thermal and viscous

interactions between the frame and the air in the pores may

be neglected at sufficiently low frequencies, providing

approximations of the frame parameters.7,8,10,14

Previously published works have frequently been re-

stricted to isotropic material modelling. However, porous

materials are in general to a certain degree anisotropic in

terms of their constitutive properties, either due to the intrin-

sic geometrical morphology of the microstructure15–17 or to

pre-compression.18 Despite this, the role of anisotropy in the

acoustical and vibrational performance of porous materials is

not thoroughly understood. In fact, available characterisation

methods assume that the material principal directions19 are

known and aligned with the measurement coordinates.7,8,20

Recent work on the sensitivity to relative alignment of two

anisotropic poro-elastic layers21 shows that the orientation of

the material principal directions of a porous layer dramati-

cally influences its vibroacoustic behaviour. The results

therein suggest that deeper knowledge on the behaviour of

anisotropic porous materials and the energy dissipation

mechanisms manifested in their dynamic behaviour could

open new opportunities for the design and optimisation of

acoustical treatments.

As observed by several authors,6,7,11,12,14 the mechanical

properties of most foams are frequency-dependent. The avail-

able characterisation methods do not explicitly model this fre-

quency dependence, but instead consider the elastic moduli as

unknown frequency-dependent complex parameters. This

renders the analysis of experimental results difficult and fur-

thermore may provide a non-causal representation of the

dynamic behaviour. Work by Pritz11,12,22,23 and by one of the

authors9,24 shows that a suitable causal model of the viscoe-

lasticity of porous and fibrous materials, may be formulated

in terms of an augmented Hooke’s law. The augmented

Hooke’s law25,26 is a family of models for anelastic27 (i.e., re-

versible viscoelastic) materials who share the property that

their stiffness matrix may be written as a superposition of a

static term and a series of complex valued, frequency-

dependent terms accounting for different relaxation phenom-

ena. Two main approaches exist for the parameterisation

of the frequency dependence, either in terms of a series of
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relaxation terms25,26,28,29 or in terms of a fractional-derivative

model.22,23,30–32 Theoretically equivalent, as shown by

Dovstam,26 both may be used in estimations of the properties

of a material through an inverse methodology. Irrespective of

the chosen parameterisation, the advantage provided is that

the obtained frequency-dependent properties constitute a fea-

sible material model description. Once available, the real and

imaginary parts of the moduli may then be extracted a poste-

riori from such a causal model.

In this paper, a general inverse method for the character-

isation of the anisotropic elastic and anelastic properties of

the frame of open-cell porous materials is proposed. The

basis for the method consists in performing a model fit on a

series of measured transfer functions on a sample of foam

placed in vacuum in order to remove the influence of the air.

Obviously, the number of parameters involved in the mate-

rial model must be smaller than the number of independently

observed states of the material. These data may be ensured

through proper choices of either geometrical arrangements,

the induced deformation states or the number of frequency

lines included, or a combination of these three. Interestingly

enough, as illustrated in the current paper, this will be of a

lesser concern for real materials where the lack of material

symmetry naturally renders the measured transfer functions

independent per se.

The starting point for the present paper is the recent

work by the authors,33 where the proposed approach was

validated against data from an artificial (numerical) simpli-

fied experiment in the special case of an orthotropic material

with the principal coordinates aligned with the coordinate

system of the experimental setup. Simulating a seismic-mass

setup11 in vacuum, a set of vibration transfer functions were

extracted for a cubic material sample. Due to the assumed

material property symmetry and the cubic geometry chosen,

an asymmetric seismic mass was used. It was shown that the

material properties could be estimated within a maximum

relative error of 5%, the largest deviations observed for the

Poisson’s ratios.

Several authors have reported that due to the foaming

processes used, most foams are transversely isotropic or

close to orthotropic.7,8,10 However, to the knowledge of the

authors, no attempt has been made to identify the deviation

of the natural coordinates of the material from the measure-

ment coordinates. In order to generalise the previously pub-

lished results, the orientations of the material principal

directions of orthotropy are here included as unknown pa-

rameters in the inverse estimation. The material model relies

on a fractional differential equation, yielding an augmented

Hooke’s law in the frequency domain, where the orthotropic

elastic and anelastic properties appear distinctively in the

stiffness matrix. The method is comprehensive in that it

allows for the estimation of the complete dynamic Hooke’s

tensor of the frame of an open-cell foam, including the three

angles that determine the orientation of the material principal

directions of orthotropy. An important aspect is that no

a priori knowledge about the material is required.

The model and methodology are here illustrated on a

melamine foam, which is widely used as a sound-absorbing

material and has been studied using Biot’s theory.4,7,18 In

addition to providing a satisfactory fit between measured and

predicted transfer functions, it is also demonstrated that al-

ternative parameterisations of the frequency dependence of

the material properties may be derived from the present

model.

II. MODEL OF THE MATERIAL

A. Constitutive equation

The constitutive law for the frame of the porous material

in vacuo may be derived as a special case of Biot’s equations

for anisotropic porous materials.1,2 Indeed, considering a po-

rous material with zero pressure and displacement in the

fluid phase yields the constitutive equation for the frame in

the form of a Hooke’s law.

A large variety of existing models may be used to

account for the dynamic effects in the motion of the frame.

Here, an augmented Hooke’s law25,26 is used, which pro-

vides a causal representation of the stiffness matrix of the

material as a linear superposition of an elastic part, account-

ing for the frequency-independent fully relaxed state of the

material, and an anelastic part, accounting for frequency-

dependent reversible viscoelastic deformation. In the original

form of the augmented Hooke’s law,25 the anelastic part of

the stiffness matrix is expressed as a series where each term

represents a different relaxation process of the material.

Such parameterisation has been used to characterise solid

and porous materials9,29,34,35 and presents the advantage of

providing a direct physical interpretation to each term of the

series. Nevertheless, for a given material the number of pa-

rameters to be estimated is large, an aspect which potentially

can cause practical computational difficulties.

Alternative parameterisations of the augmented Hooke’s

law using a fractional derivative approach30–32,36 have been

used in the case of solid and polymeric damping materi-

als.22,23 For the present purposes, this representation is inter-

esting as it allows for a model of the relaxation behaviour

with a reduced number of parameters26 and a corresponding

reduction of the computational load.

In the present paper, the fractional differential equation

proposed by Caputo and Mainardi31,32 is used. In the case of

an anisotropic material, the constitutive equation can be writ-

ten, using shortened matrix notation, as

1þ @a

@ðt=sÞa
� �

riðtÞ ¼ Cij þMij
@a

@ðt=sÞa
� �

ejðtÞ; (1)

where ri and ej denote the components of the stress and

strain tensors as

r ¼ ½ r11 r22 r33 r23 r31 r12 �T; (2)

e ¼ ½ e11 e22 e33 2e23 2e31 2e12 �T; (3)

Cij denote the components of the fully relaxed stiffness ma-

trix, Mij denote the components of a suitable memory mecha-

nism matrix, s is the relaxation time of the material, in

seconds, and a is the fractional derivative order. The frac-

tional derivative order assumes a value within the range
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0 < a � 1; (4)

with a¼ 1 corresponding to the limiting case of a Zener

model.32 It is worth noting that the definition of the relaxa-

tion time in the case of a fractional derivative model differs

from the usual definition for an exponential decay. As a mat-

ter of fact, the solution of an equation of the type of Eq. (1)

is given by a Mittag-Leffler power-law function in the time

domain,32 which in the limiting case a¼ 1 simplifies to an

exponential function.

Introducing the variable change

Mij ¼ Cij þ Bij; (5)

together with application of the Laplace transform to Eq. (1)

leads to the augmented Hooke’s law in the frequency

domain

riðxÞ ¼ HijðxÞejðxÞ; (6)

where x¼ 2pf is the circular frequency and the components

of the frequency-dependent stiffness matrix are given by

HijðxÞ ¼ Cij þ
Bij ðix=bÞa

1þ ðix=bÞa ; (7)

with b¼ 1/s denoting the relaxation frequency in rad � s�1.

The stiffness matrix thus obtained provides a model of the

deformation of the material as a superposition of its fully

relaxed state and a complex frequency-dependent relaxation

phenomenon. In general, a given material may present

different types of anisotropy in the elastic and anelastic phe-

nomena. However, both phenomena share the same micro-

structural geometry and therefore it is assumed for the

purposes of the present paper that the elastic and anelastic

parts of the stiffness matrix are collinear, by stating that

Bij ¼ b Cij; (8)

where b is a real scalar constant. The final form of the stiff-

ness matrix is then

HijðxÞ ¼ Cij 1þ b ðix=bÞa

1þ ðix=bÞa

 !
: (9)

Obviously, this is a rather far reaching hypothesis, the valid-

ity of which depends on the type of the constituent solid

frame material involved. For the specific melamine foam

studied in Sec. IV, the results show that it is a fair assump-

tion. Future studies on other types of materials are however

required to deduce its general applicability.

B. Model of the anisotropy and physical constraints

In the natural coordinate system of the material, denoted

(x0, y0, z0), the elastic part of the stiffness matrix has the

symmetric form19

C0 ¼

1

E1

� �21

E2

� �13

E1

0 0 0

1

E2

� �32

E3

0 0 0

1

E3

0 0 0

1

G23

0 0

ðsymÞ 1

G31

0

1

G12

2
666666666666666666664

3
777777777777777777775

�1

; (10)

where Ei is the Young’s modulus along axis i, Gij is the shear

modulus in plane (i, j), and �ij is the Poisson’s ratio for extension

along i resulting in contraction along j. According to the 2nd

law of thermodynamics, the stiffness matrix must be positive-

definite, imposing restrictions on the moduli, given by19

Ei > 0; Gij > 0; �2
ij < Ei=Ej;

2�21�32�13 < 1� �2
21E1=E2 � �2

32E2=E3 � �2
13E3=E1: (11)

C. Transformation of coordinates

Matrix C
0 must be expressed in the coordinate system in

which the measurements and the model are set up, denoted

(x, y, z). Using the natural coordinate system of the material

as a reference, this is achieved by application of a coordinate

transformation to C0, consisting of a composition of

three successive rotations. Using extrinsic rotations with

Tait-Bryan angles37 ð/1;/2;/3Þ around the original fixed

axes (x0, y0, z0) as a convention, the transformation is defined

by the rotation matrix

a ¼ azayax ¼
a11 a12 a13

a12 a22 a23

a13 a23 a33

2
4

3
5; (12)

where

ax ¼

1 0 0

0 cos /1 sin/1

0 �sin/1 cos /1

2
664

3
775; ay ¼

cos /2 0 �sin/2

0 1 0

sin/2 0 cos /2

2
664

3
775;

az ¼

cos /3 sin/3 0

�sin/3 cos /3 0

0 0 1

2
664

3
775: (13)

In order for the rotation matrix to be uniquely defined in

terms of the rotation angles, these are defined as

/1 2 ½�p; p�; /2 2 ½�p=2; p=2�; /3 2 ½�p; p�: (14)

The material elasticity in the measurement coordinate system

is then described by the stiffness matrix

C ¼ AC0AT; (15)

084904-3 Cuenca, Van der Kelen, and G€oransson J. Appl. Phys. 115, 084904 (2014)

 [This article is copyrighted as indicated in the article. Reuse of AIP content is subject to the terms at: http://scitation.aip.org/termsconditions. Downloaded to ] IP:

81.246.37.187 On: Wed, 26 Feb 2014 17:05:19



where the Bond matrix A is obtained from a as27

A ¼

a2
11 a2

12 a2
13 2a12a13

a2
21 a2

22 a2
23 2a22a23

a2
31 a2

32 a2
33 2a32a33

a21a31 a22a32 a23a33 a22a33 þ a23a32

a11a31 a12a32 a13a33 a12a33 þ a13a32

a11a21 a12a22 a13a23 a12a23 þ a13a22

2
66666664

2a11a13 2a11a12

2a21a23 2a21a22

2a31a33 2a31a32

a21a33 þ a23a31 a21a32 þ a22a31

a11a33 þ a13a31 a11a32 þ a12a31

a11a23 þ a13a21 a11a22 þ a12a21

3
7777775

(16)

D. Isotropic reference and degree of anisotropy

In the general case, the moduli that characterise a certain

material may differ by orders of magnitude. While this poses no

theoretical problems, it is more convenient for the inverse esti-

mation procedure proposed here to replace them with non-

dimensional parameters. The material model is then reformu-

lated in terms of the elastic properties of an arbitrary isotropic

material of reference and a set of scaling constants. These may

be interpreted as the degree of anisotropy of the material in each

of its moduli, with respect to the arbitrary isotropic reference ma-

terial. The isotropic reference is then used as the starting point

for the inverse estimation procedure, which then consists in find-

ing the scaling constants as a deviation from this reference.

The isotropic reference material is characterised by its

elastic properties E0 and �0 and its anelastic properties a0,

b0, and b0. The scaling constants are defined as the ratio

between each material property and the corresponding one

for the isotropic reference, as

ni ¼ Ei=E0; i ¼ 1; 2; 3;

ni ¼ Gkl=G0; i ¼ 9� k � l ¼ 4; 5; 6;

ni ¼ �kl=�0; i ¼ 4þ k þ l ¼ 7; 8; 9;

n10 ¼ a=a0; n11 ¼ b=b0; n12 ¼ b=b0;

(17)

where G0¼E0/2(1þ �0) is the shear modulus of the isotropic

reference material. The stiffness matrix in the natural coordi-

nate system then assumes the form

C0 ¼

1

n1E0

� n7�0

n2E0

� n8�0

n1E0

0 0 0

1

n2E0

� n9�0

n3E0

0 0 0

1

n3E0

0 0 0

1

n4G0

0 0

ðsymÞ 1

n5G0

0

1

n6G0

2
666666666666666666664

3
777777777777777777775

�1

:

(18)

Rewriting the requirements determined by Eqs. (4) and (11)

in terms of the scaling constants and considering the con-

straints on the properties of the isotropic material of refer-

ence yield the constraints for the 12 scaling constants as

E0 > 0; � 1 < �0 < 1=2;

ni > 0; i ¼ 1;…; 6;

n2
4þiþj�

2
0 < ni=nj; ij ¼ 21; 13; 32;

2�3
0n7n8n9 < 1� �2

0 n2
7n1=n2 þ n2

8n3=n1 þ n2
9n2=n3

� �
;

0 < n10 � 1=a0; n11 > 0; n12 > 0;

(19)

with ni¼ 1 (i¼ 1,…,12) corresponding to the isotropic

reference.

The nine scaling constants of the orthotropic model, the

three scaling constants of the anelastic properties and the

three angles ð/1;/2;/3Þ are then the unknowns to be deter-

mined from measurements using the proposed inverse esti-

mation method.

III. INVERSE ESTIMATION METHOD

A. Optimisation problem

With the assumed material symmetries, together with

the proportionality between elastic and anelastic moduli as

discussed above, the model used here has 15 material proper-

ties to be estimated: 9 elastic moduli for the orthotropic ma-

terial symmetry, 3 angles defining the orientation of the

principal directions, and 3 anelastic parameters. Thus, given

an arbitrarily chosen isotropic reference as discussed above,

determined by parameters E0, �0, a0, b0, and b0, the set of pa-

rameters to estimate is composed of 12 scaling constants and

3 angles, which for the present purposes are gathered in the

form of a column matrix

x ¼ n1 n2 n3 n4 n5 n6 n7 n8 n9 n10 n11 n12 /1 /2 /3½ �T: (20)

Hence, x defines a 15-dimensional space in which the model

evolves. The properties of a given material are then defined

as the set x0 that minimises a distance in such space between

the model and the experiment.

In the current work, the estimation of the properties of

the material is formulated as an optimisation problem in

which the distance to minimise defines the objective func-

tion. Assuming that M transfer functions are extracted from

the measurement and replicated using the model with a cer-

tain set of parameters x, the objective function is defined as

dðxÞ ¼ 1þ
XM

m¼1

XN

n¼1

���� umðxn; xÞ � uðexpÞ
m ðxnÞ

u
ðexpÞ
m ðxnÞ

����
2

; (21)

where N is the number of frequency points of each transfer

function, and uðexpÞ
m and um, respectively, denote the experi-

mental and simulated transfer functions. The objective func-

tion, formulated in terms of a relative difference, gives equal
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importance to all frequency samples in the transfer functions.

Furthermore, it should be noted in Eq. (21) that a constant is

added to the objective function as a general precaution in

order to prevent numerical issues for small values.

Formally, the optimisation problem consists in minimis-

ing Eq. (21) subjected to the constraints in Eq. (19).

It is important to stress that the material properties to be

estimated are independent from frequency and that all fre-

quency lines in the transfer functions are simultaneously

taken into account within the objective function. This

ensures that the number of experimental data values avail-

able for the inverse estimation is significantly larger than the

number of parameters to estimate.

B. Experimental setup

The experimental setup, chosen for the present material

characterisation, consists of a cubic sample of porous mate-

rial placed between a vertically vibrating plate and a seismic

loading, as depicted in Fig. 1. The setup is placed in a vac-

uum chamber in order to remove the air from the pores of

the material and the mass of the seismic loading is chosen so

as to enforce variations of the transfer functions within the

frequency range of interest. In order for the setup to reveal

the full anisotropy of the sample, 4 acceleration transfer

functions are measured between the shaker and laser vibrom-

eter points ri (i¼ 1,…,4) in each of the 3 directions of space,

for a total of 12 transfer functions. Note that, in contrast to

previous work by the authors,33 the seismic mass is uniform.

This choice is made based on the fact that in general, for real

porous materials exhibiting a significant degree of anisotropy

and also having natural coordinates unaligned with the mea-

surement directions, enough deviation from symmetry is met

to provide independent observations of the state of the mate-

rial under these conditions.

The laser vibrometer provides the vertical displacement

at the 4 points ri and thus gives access to 3 degrees of free-

dom of the seismic loading, i.e., vertical translation and two

out-of-plane rotations. Therefore, 9 independent experimen-

tal data values are available at each frequency, which is

appropriate considering the orthotropic symmetry of the

stiffness matrix. It is then required that the transfer functions

contain at least two frequencies in order to extract the 15 ma-

terial properties. As detailed in the application in Sec. IV,

the measurement is performed at a large number of frequen-

cies in order to minimise the estimation error.

The coordinate system used for the inverse estimation is

the coordinate system (x, y, z) attached to the sample. In

practice, the sample is rotated so that its x, y, and z directions

are subsequently aligned with the direction of excitation. As

a convention, the orientation of Fig. 1, with a vertical z direc-

tion is considered as a reference, and a rotation of p/2 around

the y axis (respectively, �p/2 around the x axis) is applied to

align the x axis (respectively, y axis) with the vertical direc-

tion, using the transformation of Sec. II C.

C. Numerical implementation

The set of 12 transfer functions extracted from the ex-

perimental setup must be replicated using the model in order

to build the objective function. Here, they are numerically

simulated using a conventional finite element model of the

setup including the sample, the shaker plate, and the seismic

mass. A uniform harmonic force is imposed on the bottom

face of the shaker plate and homogeneous natural boundary

conditions are used elsewhere in order to account for vacuum

conditions. Furthermore, the contact between the three sub-

structures is considered to be perfect with no lateral sliding,

i.e., continuity of all displacements and velocities is assumed

at the interfaces. The specific numerical aspects of the finite

element implementation are adapted to the material to char-

acterise and thus are detailed in the application example in

the next section.

The optimisation problem is implemented using the glob-

ally convergent method of moving asymptotes.38 The latter is

based on the approximation of the objective function by a

convex variable-separated function of the optimisation varia-

bles x where vertical asymptotes determine the interval of

admissibility of each variable at the successive iterations. The

present paper explores the advantage embedded in conserva-

tive convex separable approximations, particularly suited to

problems with a large number of unknowns. The finite ele-

ment model is included within the optimiser as a subroutine

providing the transfer functions, where the stiffness matrix of

the material is updated at each iteration. The algorithm is con-

sidered to have converged to an optimal solution if both the

objective function and the optimisation variables, normalised

to unity, vary less than 10�3 in 3 successive iterations.

A numerical validation has been performed through test-

ing of the method against a range of fictitious materials, anal-

ogous to previous work.33 While the results will not be

detailed here, the conclusions are that for a material with a

significant degree of anisotropy and whose natural coordi-

nates are not aligned with the measurement directions, the

transfer functions are differentiable by using a symmetrical

mass loading.

IV. CHARACTERISATION OF A MELAMINE FOAM

A. Preparation of the setup

Melamine open-cell foams are widely used for sound

insulation and absorption. They are obtained by foaming a

melamine-formaldehyde precondensate by heating.39 Due to
FIG. 1. Schematic view of the experimental setup. ri, laser vibrometer points

for displacement measurement.

084904-5 Cuenca, Van der Kelen, and G€oransson J. Appl. Phys. 115, 084904 (2014)

 [This article is copyrighted as indicated in the article. Reuse of AIP content is subject to the terms at: http://scitation.aip.org/termsconditions. Downloaded to ] IP:

81.246.37.187 On: Wed, 26 Feb 2014 17:05:19



the nature of the foaming process, there exists a rising direc-

tion which is close to the vertical direction and whose prop-

erties are susceptible to differ from the other two directions,

thereby motivating the existence of transversely isotropic or

orthotropic symmetry. For the foam specimen used herein,

the z axis of the coordinate system attached to the sample is

chosen as the foam rising direction reported by the manufac-

turer of the material. It is commercially manufactured and

therefore other details about the final properties of the foam

are not known.18

Specific precautions are required in order to prepare the

samples for the measurements. In the present case, in order

to avoid non-linearity in the vibrations due to detachments,

the foam was bonded to the bottom plate and the seismic

mass (Fig. 1) using adhesive tape. Therefore, three different

samples were used, one for the measurement corresponding

to each spatial coordinate orientation. The samples were cut

from a large block of melamine foam, where they were adja-

cent to each other, covering a maximum distance of 30 cm. It

is henceforth assumed that the spatial homogeneity of the

material is ensured over that distance and therefore the dis-

persion in the estimated material properties due to spatial

inhomogeneity cannot be quantified here.

The mass densities of the samples and the loading masses

present slight differences, which needs to be taken into

account in the numerical model. The samples are 10 cm-side

cubic and their mass density is, respectively, 9:1 kg m�3;
10:2 kg m�3, and 9:5 kg m�3 for the measurements along the

x, y, and z directions. The seismic masses are balsa plates of

10 cm� 10 cm� 2 cm including an added mass of 7.45 g by

the adhesive tape. The total mass densities qs of the seismic

loadings are, respectively, 177:25 kg m�3; 169:75 kg m�3,

and 216:75 kg m�3 for the measurements along the x, y, and

z directions. For the three samples, the bottom support is a

Plexiglas plate of 10 cm� 10 cm� 0.792 cm.

The 12 transfer functions are measured in the frequency

range 0–400 Hz with a resolution of 0.1563 Hz, using an ac-

celerometer on the bottom plate and a laser vibrometer on

the seismic mass. In order to reduce the computational cost

when numerically reproducing the transfer functions, the

data are limited to 76 uniformly spaced frequency lines

within the range 70.625–398.75 Hz, with a resolution of

4.375 Hz. Therefore, a total of 912 experimental data values

are available, from which 684 are independent from each

other (see Sec. III B).

B. Validation of vacuum conditions

In the measurements performed, vacuum conditions

were supposed to have been reached if the static pressure

inside the vacuum chamber was lower than 3% of the atmos-

pheric pressure, that is, below 3 kPa, which corresponds to a

medium range vacuum.40 This was achieved by means of a

pump and monitored using a vacuum gauge. Due to the exis-

tence of flow resistivity in the porous material,1 it is neces-

sary to wait a sufficiently long time for the vacuum to be

settled inside the sample. In order to determine the stabilisa-

tion time of the vacuum conditions, the evolution of the

transfer functions used for the inverse estimation was

observed. Figure 2 shows one of the transfer functions at am-

bient pressure conditions and after 8 and 24 hours at less

than 3 kPa. The mean absolute variation of the transfer func-

tions between 8 and 24 hours in the vacuum chamber is

3.05%. It is thus concluded that the vacuum conditions were

stable after 8 hours in the vacuum chamber, and therefore

subsequent measurements were performed under such condi-

tions. It is worth noting that the seismic mass used for the

results in Fig. 2 is lighter than the one used for the inverse

estimations later on.

C. Finite element model

The finite element model is called iteratively within the

optimiser and thus it is necessary to reduce its computational

cost by minimising the spatial resolution of the finite element

mesh. Preliminary investigations show that the Young’s

moduli of the melamine foam to be characterised are higher

than 100 kPa. The minimum values of the compressional and

shear wavelengths27 estimated at a frequency above the fre-

quency range of interest, namely 500 Hz, using an isotropic

solid model with the highest mass density measured and a

Poisson’s ratio ranging from �1 to 0.5, are kC¼ 6.32 m for

compressional waves and ks¼ 3.65 m for shear waves. The

dimensions of the sample are thus considerably smaller than

the wavelength and therefore the requirement for the mesh is

that it correctly represents the different types of motion

inside the material. Thus, a mesh with two elements per side

of the sample was used, with quadratic order Lagrange poly-

nomial tetrahedral elements.41

D. Model fit and estimated properties

The application of the method to the melamine foam

specimen requires an isotropic material of reference as a

starting point. The estimation procedure was repeated using

several isotropic materials as initial configurations and it was

FIG. 2. Modulus (a) and phase (b) of a transfer function of the setup after

different times in the vacuum chamber. Dashed line, at ambient atmospheric

pressure; solid line, after 8 hours below 3 kPa; dotted line, after 24 hours

below 3 kPa.
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verified that the resulting estimations were equivalent in

terms of the estimated parameters. To illustrate the inverse

estimation, one particular choice of isotropic material of ref-

erence is shown below. The properties are chosen as

E0 ¼ 3 � 105 Pa; �0 ¼ 0:3;

b0 ¼ 832:16 krad � s�1; a0 ¼ 0:7; b0 ¼ 0:3:
(22)

The optimisation variables are initially at the neutral state

where the material is isotropic and the material natural coor-

dinates are aligned with the measurement coordinates, which

is given by

ni ¼ 1; i ¼ 1;…; 12;
ni ¼ 0; i ¼ 13; 14; 15:

(23)

The objective function converges after 155 iterations

within the tolerance described in Sec. III C. Figure 3 shows

the transfer functions between the reference at the bottom

plate and top-plate point r1, obtained experimentally and by

the inverse estimation method. It is observed that the current

experimental setup allows to differentiate all transfer func-

tions and therefore an asymmetrical seismic loading is not

required for the present material.

The resulting optimal set of variables x yields the esti-

mated properties shown in Table I. The precision of the esti-

mated material properties is not accessible in a direct manner

due to the fact that the method consists in an inverse estima-

tion. Nevertheless, previous results33 indicate that the

method provides the different terms of the estimated stiffness

matrix with an uncertainty of 0.5% to 5%. The estimated ma-

terial properties are therefore given here with 3 significant

figures. Furthermore, the angles ð/1;/2;/3Þ obtained from

the inverse estimation determine the natural coordinate

system of the material, shown together with the measurement

coordinate system in Fig. 4.

Finally, the full frequency-dependent complex stiffness

matrix of the melamine foam frame is obtained from Eq. (9)

using the estimated properties and is shown in Fig. 5 in the

natural coordinate system. Note that the stiffness matrix

terms have been extrapolated beyond the frequency range ac-

cessible from the measurements in order to illustrate the loss

factor peak and inflexion of the stiffness at the relaxation

frequency.

E. Discussion

It can be observed in Fig. 3 that the transfer functions

obtained by the proposed method are reasonably close to the

experimental ones. In particular, the model accurately

accounts for the compressional phenomena and transverse

coupling in the deformation of the material, which respec-

tively correspond to the main peak and secondary variations

of the transfer functions. Moreover, a direct correspondence

is observed between the frequency of the main peak of the

transfer functions and the value of the Young’s moduli in the

three directions of space reported in Table I.

FIG. 3. Modulus (a) and phase (b) of the transfer functions between the ref-

erence at the bottom plate and point r1 of the top plate, for the three spatial

orientations of the sample. Grey solid line, experiment; black dotted line,

model.

FIG. 4. Cubic sample of foam in the measurement coordinate system (x, y, z)

and estimated natural coordinate system (x0, y0, z0).

TABLE I. Estimated properties of the melamine foam.

Property Value Unit

E1 448 kPa

E2 211 kPa

E3 170 kPa

G23 104 kPa

G31 124 kPa

G12 101 kPa

�21 0.445 -

�13 �0.514 -

�32 0.433 -

b 813 krad/s

a 0.333 -

b 0.296 -

/1 �0.118 rad

/2 0.030 rad

/3 0.131 rad
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The extracted set of material properties satisfies the con-

straints given by Eqs. (4) and (11), which guarantees that the

material model is a feasible realisation. Furthermore, the nat-

ural coordinate system obtained exhibits a low deviation

from the measurement coordinates, which is consistent with

the fact that the foam rising direction is aligned with one of

the measurement coordinates, namely, the z axis. In this

regard, it is observed that the lowest Young’s modulus is E3,

which at first sight contradicts the common case where the

rising direction exhibits the highest compressional stiff-

ness.16 However, for the present material, this is most prob-

ably due to compression in the z direction which is coupled

with compression in the x direction via a negative Poisson’s

ratio �13.

It can be observed in Fig. 5 that the different terms of

the stiffness matrix of the frame of the melamine foam pres-

ent the well-known frequency dependence of the stiffness of

viscoelastic materials predicted by the present type of consti-

tutive equation.22,31,32 Indeed, the modulus of the different

terms of the stiffness matrix increases with frequency and

the phase presents a peak which corresponds to maximum

energy loss by anelastic effects. Moreover, the frequency of

the damping peak is lower than the relaxation frequency and

depends on the fractional derivative order that characterises

the material.22 In this case, the maximum loss factor is

reached at a frequency of 129.393 kHz. It is important to

stress that, while a maximum loss at such a frequency does

not have a direct significance for the present application, it

characterises the frequency-dependent properties of the poly-

mer, regardless of its microstructural arrangement.12,42

The results obtained emphasise the importance of con-

sidering the orientation of the material principal directions as

an unknown property of the material. Indeed, the secondary

variations of the transfer functions measured using this type

of setup are due to transverse coupling between the different

directions of motion of the material. In the present case,

although the angles separating the measurement and natural

coordinate systems are small, they are nevertheless

responsible for the appearance of the secondary variations in

the transfer functions.

V. ALTERNATIVE PARAMETERISATIONS

A. Frequency-dependent moduli

A common practice is to estimate the anisotropic moduli

of a material as frequency-dependent quantities.6–8,11,12,14 The

properties estimated herein can be presented in such an alterna-

tive manner, by considering that the anelastic frequency de-

pendence is contained in the Young’s moduli, shear moduli,

and Poisson ratios themselves. Such equivalent frequency-

dependent moduli are obtained by expanding Eq. (9) and iden-

tifying it in the form of Eq. (10) and represented in Fig. 6. This

type of parameterisation highlights an important property of

the present model. In fact, the Young’s and shear moduli carry

the complex frequency dependence, while the Poisson’s ratios

are necessarily real and constant. This is an intrinsic conse-

quence of the assumed proportionality in the material model.

This result is consistent with previous work by Jaouen

et al.7 on a melamine foam. The results therein show that the

Young’s and shear moduli increase with frequency and the

imaginary part of the shear moduli exhibits the characteristic

viscoelastic peak. Additionally, in the same paper, one of the

Poisson’s ratios was reported to be close to a constant real

value of 0.44 over a limited frequency range. Results by

Sahraoui et al.14 corroborate these trends on foams assumed

to be isotropic.

FIG. 5. Frequency-dependent stiffness matrix of the frame of the melamine

foam from estimated parameters, in the natural coordinate system. (a)

Modulus of the different terms of the stiffness matrix; (b) loss factor.

FIG. 6. Equivalent frequency-dependent material moduli. Real (a) and imag-

inary (b) parts of ~Ei (solid line) and ~Gij (dashed line). (c) ~� ij.
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B. Discrete-process and continuous-spectrum
relaxation models

The fractional-derivative model used in the present pa-

per is one of the possible parameterisations of the augmented

Hooke’s law and has been preferred here for its inherently

reduced number of parameters. Other parameterisations

include discrete-process relaxation models and continuous-

spectrum relaxation models.26 In particular, previous work

makes extensive use of discrete processes,9,24,29,34,35 which

presents the advantage that each process corresponds to a

separate relaxation phenomenon in the form of an exponen-

tial decay in the time domain. As pointed out by Dovstam,26

all parameterisations are valid and equivalent as long as they

closely simulate the experimental data in the frequency range

of interest. In order to link the present results to previous

works, alternative discrete-process and continuous-spectrum

parameterisations for the melamine foam from the estimated

parameters of the fractional-derivative model are calculated.

A material relaxation function may be defined as the

frequency-dependent factor of the stiffness matrix, which for

the fractional-derivative model assumes the form

Rf ðxÞ ¼ 1þ b ðix=bÞa

1þ ðix=bÞa : (24)

The relaxation functions for the discrete-process and

continuous-spectrum relaxation models are, respectively,26

RdðxÞ ¼ 1þ
XN

n¼1

bn ix=bn

1þ ix=bn

(25)

and

RcðxÞ ¼ 1þ
ð ~bð~bÞ ix=~b

1þ ix=~b
d~b: (26)

The fractional-derivative model is governed by 3 parameters,

a, b, and b, the discrete-process model is governed by N
pairs (bn, bn), and the continuous model is governed by a

continuous spectrum b(b).

A discrete-process model for the melamine foam may

be obtained by fitting Eq. (25) onto Eq. (24) in a least-

squares sense. Figure 7 shows such a fit using a prescribed

set of 12 logarithmically distributed relaxation frequencies

bn from 2p � 10�2 to 2p � 1010. The resulting bn are the ampli-

tudes of the different relaxation processes and their individ-

ual values depend on the number of processes in the

parameterisation. The cumulative sum cn of the amplitudes

bn is therefore chosen as an invariant representation of the

spectrum, shown in Fig. 8 for the present material.

The knowledge of the discrete-process parameterisation

in the frequency domain allows for the time-domain relaxa-

tion function to be computed as26

rdðtÞ ¼
X

n

bne�t=sn ; (27)

where sn¼ 1/bn are the relaxation times of the different proc-

esses. Figure 9 shows the predicted time-domain relaxation

function for the melamine foam.

Further on, the relaxation function according to the

continuous-spectrum model may be derived also, as an

approximation using a large number of discrete processes.

Using 384 processes, the relaxation function indistinguishably

fits the fractional-derivative relaxation function of Fig. 7,

with the corresponding spectrum ~c represented as a dashed

line in Fig. 8. Accordingly, the time relaxation function rc(t)
is computed and represented with a dashed line in Fig. 9.

The ability to simulate the time relaxation function at

longer times depends on the distribution of the discrete relax-

ation frequencies in the low frequency range. Figure 9 illus-

trates this, as the decay is overestimated due to the lack of

terms with larger relaxation times. In the present case, this is

overcome by including lower relaxation frequencies in the

discrete-process model fitting.

FIG. 7. Discrete process fit of the relaxation function. (a) Real part; (b)

imaginary part. Solid line, fractional-derivative model; dashed line, discrete-

process model using 12 processes.

FIG. 8. Relaxation spectrum. Bullet points, discrete-process model; dashed

line, continuous-spectrum model.

FIG. 9. Relaxation function in the time domain. Solid line, discrete-process

model; dashed line, continuous-spectrum model.
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In that sense, it is important to stress that the different

parameterisations are not necessarily unique and that, in the

case of the melamine foam here characterised, the frequency

dependence of the stiffness matrix has been obtained from

data in a limited frequency range available experimentally.

VI. CONCLUSION

The present paper proposes a model of the elastic and

anelastic properties of the frame of anisotropic open-cell po-

rous materials and an inverse method for their experimental

characterisation.

The results suggest that the proposed constitutive law,

based on a fractional-derivative augmented Hooke’s law, is

an appropriate model for the anisotropic complex frequency-

dependent stiffness matrix of open-cell foams. It has been

shown, by applying the method to a sample of melamine

foam, that such material can be successfully modelled using

the proposed model in the frequency range of interest.

It is important to stress that the parameterisation of the

augmented Hooke’s law is not unique. In the present case,

the feasibility of the approach has been shown using a

fractional-derivative formulation, chosen for its reduced

number of parameters. It has been shown that various equiv-

alent parameterisations of the augmented Hooke’s law may

be used, each of them revealing different aspects of the mate-

rial properties. For instance, a parameterisation in terms of

frequency-dependent moduli shows that the Young’s and

shear moduli carry the complex frequency dependence while

the Poisson’s ratios are real and constant. In addition,

descriptions in terms of discrete or continuous relaxation

processes give a straightforward interpretation of the mate-

rial anelasticity as a time-domain relaxation phenomenon.

These parameterisations are straightforwardly derived from

the fractional-derivative model, thus making the connection

with previous work.7,9,14,24,29,34,35

Another important aspect is that the present model relies

on the strong simplifying assumption that the elastic and ane-

lastic properties obey to the same material symmetry. Also,

due to the microstructure of the foam, the relaxation mecha-

nisms are most certainly different for compression and shear.

A combined methodology is in current development in order

to remove this assumption, where the elastic properties are

determined using a static inverse estimation method,5 allow-

ing the present method to be used to determine the separate

anisotropic anelastic properties.

A key aspect of the application of the method is the

degree of symmetry in the sample to characterise within

the experimental setup as a whole. Previous work by the

authors33 suggests the use of an asymmetrical seismic mass

in order to make the setup more sensitive to shear in the spe-

cial case of a material whose natural coordinates are aligned

with the measurement coordinates and whose degree of ani-

sotropy is weak, namely, a nearly transversely isotropic ma-

terial. The present results indicate that an asymmetrical

seismic mass is not required in the case of a real material

such as the one investigated here, where the natural and mea-

surement coordinate systems differ and where the degree of

anisotropy is sufficiently high to introduce differences

among the individual transfer functions. Whether or not the

symmetry in the setup must be broken in order to identify

the parameters of a specific material must be decided on a

case-specific basis. A means to provide insight into this as-

pect is to inspect the measured transfer functions and their

frequency dependence in order to assess their degree of mu-

tual independence.

The inverse estimation procedure proposed herein may

be adapted to more specific or more general cases. For

instance, the method can in principle be generalised to the

case of materials whose relaxation and retardation times are

different,22 which however increases the number of parame-

ters to estimate. Also, a more general type of anisotropy may

be considered but may require a modification of the experi-

mental protocol due to the fact that the current setup pro-

vides 9 independent experimental values at each frequency,

which is appropriate for orthotropic materials. Further

research would therefore be needed in this direction.

The present approach finds immediate use in numerical

models of the acoustics of anisotropic porous materials such

as, for instance, the weak formulation of Biot’s equations

and its finite element implementation developed by H€orlin

and G€oransson.43 The stiffness matrix of the frame and the

anisotropic flow resistivity tensor are among the input pa-

rameters of such formulation, the latter being accessible via

a recently developed experimental methodology.4
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